

Daily Tutorial Sheet-7	Level-2

86.(A)
$$pH = pK_a + log \frac{[Salt]}{[Acid]} = pK_a + 1$$

87.(B)
$$Mg^{+2} + 2H_2O \rightleftharpoons Mg(OH)_2 + 2H^+$$
 $K_h = \frac{K^2_w}{K_h}$

- **88.(D)** Amphiprotic species are proton donor as well as proton acceptor species.
- **89.(B)** Statement-2 is not an explanation for Statement-1

90.(A)
$$K_h = \frac{K_w}{K_a} = 10^{-9} = 0.1 \text{ h}^2 \implies h = 0.01$$

91.(A)
$$K_h = \frac{K_w}{K_a} = 10^{-9}$$

$$10^{-9} = 10^{-3} h^2$$
 \Rightarrow $h^2 = 10^{-6}$ \Rightarrow $h = 10^{-3}$

92.(D) For basic buffer

$$\begin{aligned} pOH &= pK_b + log \frac{[NH_4^+]}{[NH_4OH]} = 5 + log \left[\frac{0.01}{0.1}\right] = 4 \\ \Rightarrow \qquad pH &= 14 - pOH = 10 \end{aligned}$$

- $\textbf{93.(B)} \quad \text{Common ion effect by HCl will suppress the dissociation of weak electrolyte } \quad \text{CH}_{3}\text{COOH}$
- $\textbf{94.(AC)} \ \text{Common ion effect by } \ \text{NH}_4\text{Cl} \ \ \text{salt will suppress the dissociation of weak electrolyte}, \ \text{NH}_4\text{OH}.$
- **95.(D)** Apply Le Chatelier's principle

VMC | Chemistry 106 Ionic Equilibrium